Acknowledgment. This work was suppored by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan (No. 59550581).

la, 85-01-8; lb, 120-12-7; IC, 91-20-3; 2a, Registry No. 97825-83-7; 2b, 97825-84-8; 2c, 97825-85-9; 2d, 97825-86-0; 2e, 97825-87-1; 2f, 97825-88-2; 2g, 97825-89-3; 2h, 97825-90-6; 2i, 97825-91-7; 2j, 97825-92-8; 3a, 134-32-7; NH₃, 7664-41-7; MeNH₂, 74-89-5; EtNH₂, 75-04-7; HO(CH₂)₂NH₂, 141-43-5; CH₂=CHC- H_2NH_2 , 107-11-9; $NH_2(CH_2)_2NH_2$, 107-15-3; $NC(CH_2)_2NH_2$, 151-18-8; EtOC(O)CH₂NH₂, 459-73-4.

Supplementary Material Available: A table of melting points and lH **NMR spectral and elemental analyses data for compounds 2a-j (2 pages). Ordering information is given on any current masthead page.**

> **Masahide Yasuda,* Toshiaki Yamashita Takayuki Matsumoto, Kensuke Shima**

Department of Industrial Chemistry Faculty of Engineering Miyazaki University Kirishima, Miyazaki 880, Japan

Chyongjin Pac*

Department of Chemical Process Engineering Faculty of Engineering Osaka University Yamadaoka, Osaka **565,** *Japan Received April* **18, 1985**

Enantioselective Total Synthesis of (+ **)-Pumiliotoxin A**

Summary: (+)-Pumiliotoxin A **(2),** the parent alkaloid of the cardiac-active pumiliotoxin A class, can be prepared in 13 steps and **5%** overall yield from (S)-(-)-2-methyl-lpenten-3-01 **(4).** This enantioselective total synthesis establishes, for the first time, the complete stereostructure of **2.**

Sir: Daly and co-workers' first isolated pumiliotoxins **A (2)** and B **(1)** from the Panamanian poison frog *Dendrobates pumilio* in 1967.^{1,2} The structure of the powerful

cardiotonic agent^{1,3} pumiliotoxin B (1) has now been rigorously established by a combination of spectroscopic, 4

D. H. J. Med. Chem. 1985, 28, 482. Albuquerque, E. X.; Warnick, J. E.;
Maleque, M. A.; Kauffman, F. C.; Tamburni, R.; Nimit, Y.; Daly, J. W.
Mol. Pharmacol. 1981, 19, 411.

degradative,⁵ and total synthesis⁶ studies. In contrast, the stereostructure of pumiliotoxin $A,$ ^{4,7} the parent alkaloid of the pumiliotoxin A class,² is not known. Recent studies⁷ indicate that samples of **2** isolated from *Dendrobates pumilio* are mixtures of two isomers that are surmised to be epimers at C-15. In this paper, we report the synthesis of (+)-pumiliotoxin A **(2)** from **(S)-(-)-2-methyl-l-penten-3-01 (4).8** This enantioselective total synthesis rigorously establishes the complete stereostructure of **2** and demonstrates that the major isomer of $(+)$ -pumiliotoxin A isolated from dendrobatid frogs has the S configuration at C-15 $(2, \beta$ -OH). Moreover, the convergent synthesis strategy described herein achieves by far the most efficient entry to the biologically important² pumiliotoxin A alkaloids to be developed to date.

The chemical objective of this total synthesis endeavor was to examine whether the iminium ion-vinylsilane cyclization approach⁶ for constructing the (Z) -6-alkylideneindolizidine ring system of this cardiac toxin class would succeed with a fully functionalized side chain, i.e. $3 \rightarrow 2$. This strategy is attractive since it is much more convergent than the approach we had previously employed 6 to prepare (+)-pumiliotoxin B.

A key intermediate in the experimental verification of this approach is (-)-silylalkyne **13,** which embodies the fully elaborated side chain of pumiliotoxin A. The synthesis of 13 starts with the S alcohol 4^8 ([α]²⁵_D -4.9° *(c* 0.63, $CHCl₃$; >98% ee⁹), which is readily obtained by Sharpless kinetic resolution.1° Benzylation of **4** (NaH, BnBr; 86%

yield) provides $5¹¹$ which is successfully cleaved with 1 equiv¹² of O_3 (-78 °C, MeOH; Me₂S; 84% yield) to give α -benzyloxy ketone 6^{11} ($[\alpha]^{25}$ _D -113° (*c* 2.6, CHCl₃)). The reaction of **6** with vinylmagnesium bromide (THF, 25 "C) occurs with $>99\%$ stereoselectivity¹³ to afford the syn

(4) Daly, J. W.; Tokuyama, T.; **Fujiwara,** T.; **Highet, R. L.; Karle,** I. **L.** *J. Am. Chem. SOC.* **1980,102,830. Tokuyama, T.; Shimada, K.; Uem-ura, M.; Daly,** J. **W.** *Tetrahedron Lett.* **1982,23, 2121. Overman, L. E.; McCready, R. J.** *Ibid.* **1982,23, 2355. (5) Uemura, M.; Shimada,** K.; **Tokuyama, T.; Daly,** J. **W.** *Tetrahedron*

Lett. **1982, 23, 4369.**

(6) **Overman, L. E.; Bell, K. L.; Ito, F.** *J. Am. Chem. SOC.* **1984,** *106,* **4192.**

(7) Tokuyama, T.; Daly, J. **W.; Highet, R. J.** *Tetrahedron,* **1984, 40, 1183.**

(8) Catalytic hydrogenation of (-)-4 gives (S)-(-)-l-methylpentan-3-01 whose absolute configuration is established: Buchi, *G.;* **Crombie,** L.; **Godin, P.** J.; **Kaltenbronn,** J. S.; **Siddalingaiah, K.** S.; **Whiting, D. A.** *J.*

Chem. Soc. 1961, 2843.

(9) ¹H NMR analysis of the (+)-MTPA ester: Mosher, H. L.; Dale, J.

A.; Dull, D. L. *J. Org. Chem.* 1969, 34, 2543.

(10) Martin, V. S.; Woodward, S. S.; Katsuki, T.; Yamada, Y.; Ikeda,

M.; Sharpless, B. *J. Am. Chem. SOC.* **1981, 103,6237.**

(11) Isolated intermediates showed correct molecular compositions (elemental analysis or high-resolution MS) and appropriate NMR and mass spectra.

(12) Careful monitoring by TLC is necessary to avoid overoxidation to give unwanted benzoate.

(13) See, inter alia: Still, W. C.; McDonald, J. **H., 111. Tetrahedron Lett., 1980, 1031.**

⁽¹⁾ Daly, J. **W.; Myers, C. W.** *Science (Washington, D.C.)* **1967, 156,**

^{970.} (2) For recent reviews of these poison frog alkaloids, see: (a) Daly J. W. Fortschr. Chem. Org. Naturst. 1982, 41, 205. (b) Witkop, B.;
Gössinger, E. In "The Alkaloids"; Brossi, A., Ed.; Academic Press: New
York, 1983; Vol. 21, Chapter 5.
(3) See, inter alia: Daly, J. W.; McNeal, E. T.; Overma

alkoxy alcohol 8^{11} ([α]_D -21.2° (c 0.82, CHCl₃)). The intermediate tertiary alkoxide could be acylated in situ (EtCOCl, 2.0 equiv; HMPA, 1.2 equiv; 25 °C) to give 7^{11} $((\alpha)^{25}$ ₀ -10.2° (c 0.95, CHCl₃)) in 70% overall yield. Claisen rearrangement of the (2)-silylketene acetal derivative of **7** (LDA, 23 vol % HMPA-THF, -78 "C; t-BuMezSiC1, -78 rearrangement of the (Z) -silylketene acetal derivative of
7 (LDA, 23 vol % HMPA–THF, –78 °C; t-BuMe₂SiCl, –78
°C → room temperature) following the Ireland¹⁴ procedure
provides after estarification (MaQH HCl), all tiH provides, after esterification (MeOH, HCl), **9l'** [IH NMR δ 1.18 d ($J = 6.8$ Hz, C-11 Me) and its C-11 epimer 10 ^{[1}H NMR δ 1.19 d ($J = 6.9$ Hz, C-11 Me) in 90% yield. The ratio of isomers obtained from this sequence $(9:10 = 7:1,$ ¹H NMR analysis) reflects the expected^{14,15} enolization stereoselectivity. Unfortunately, we were unsuccessful in separating these epimers or any acyclic intermediate derived from them, and removal of the unwanted *S* C-ll epimer had to await establishment of the alkylideneindolizidine ring.¹⁶ Reduction of 9 (LiAlH₄, 0 °C; 95%) yield) provides **ll,11J7** which is best oxidized to aldehyde $12^{11,17}$ with dimethyl sulfoxide activated with SO_3 pyridine¹⁸ (Et₃N, 25[°]C; 90% yield). The conversion of 12 to the desired silylalkyne $13^{11,17}$ ($\left[\alpha\right]^{25}$ _D -44.4° (c 1.2, $CHCl₃$)) is readily accomplished in 87% overall yield by the method of Corey and Fuchs (Ph₃P, CBr₄; BuLi; $Me₃SiCl$).¹⁹ This overall sequence provides $(-)$ -13¹⁷ in eight steps and 34% overall yield from (S)-2-methyl-1 penten-3-01 **(4).** ¹⁷ with dimethyl sulfoxide

dine¹⁸ (Et₃N, 25 °C; 90% yiel

o the desired silylalkyne 13^{11,}

I₃)) is readily accomplished in

method of Corey and Fuch

SiCl).¹⁹ This overall sequen

t steps and 34% overall yiel emperature) following the Ireland¹⁴ forcedure

emperature) following the Ireland¹⁴ forcedure

emperature) following the Ireland¹⁴ forcedure

of $\partial_s(B_+C-11 \text{ Me})$ is 90% wiell. Then NMR (+1-pumilionorm A showed $[a$

Following procedures optimized during our pumiliotoxin B synthesis: **13** is converted to the silylvinyl alanate and coupled with the enantiomerically pure epoxide **146** (0.5

equiv, THF, $60 °C$) to give bicyclic carbamate $15^{11,17}$ (IR 1744 cm-') in 52% yield based on epoxide **14.** Hydrolysis (KOH, MeOH, 80 "C) of **15,** followed by addition of excess formalin affords the crude cyclopentoxazolidine **1617** in essentially quantitative yield. Cyclization of **16** requires careful control of the acidity of the reaction medium in order to prevent solvolysis of the allylic benzyl ether. The optimum condition proved to be heating **16** at 80 "C in a buffered (pyridine-pyridinium tosylate, pH \sim 4.5) solution of MeOH, which provides *stereospecifically6* the desired (Z)-6-alkylideneinodolizidine 17^{11} ([α]_D -6.38° (c 1.60, CHCl,)) in 71% yield from **15.** Debenzylation (Li/ NH3-THF, -78 "C) of **17** followed by chromatographic separation (silica gel, 50:1:0.1 $CHCl₃-MeOH-12$ N NH₄OH) of the unnatural *S* C-11 isomer gave pure¹¹

(+)-(15S)-pumiliotoxin A in 75% yield. Comparison of the 'H NMR spectrum (at 250 and *500* MHz) of this synthetic material $\left[\delta\ 0.99\ (d,\ J=6.6\ Hz,\ C-11\ Me\right),\ 0.85\ (t,\ J=7.4$ Hz, C-17 Me)] with a sample of natural material, which was a 2:1 mixture of isomers,^{7,20} showed conclusively the identity of the synthetic material with the major isomer **(307 A')7** obtained from natural sources. Our synthetic (+)-pumiliotoxin A showed $[\alpha]^{25}$ _D +13.9° (c 0.80, CHCl₃), which compares with a rotation of $+14.2^{\circ}$ (c 0.51, CHCl₃) determined for the 2:1 mixture²¹ isolated from *Dendrobates pumilio.* Synthetic **2** also showed ionotropic effects on isolated guinea pig atria preparations 22 comparable to those of the natural toxin.²

The convergent total synthesis reported here is a practical method for the preparation of $(+)$ -pumiliotoxin A since it requires only 13 steps from **4** and proceeds in **5%** overall yield. Of equal importance, this synthesis demonstrates that complex functionality are compatible with iminium ion-vinylsilane cyclizations, thus enhancing the general utility of this useful ring-forming method.²⁴

Acknowledgment. We particularly thank Dr. J. W. Daly for the comparison samples of pumiliotoxin A and the biological comparisons. This study was supported by PHS Grant HL-25854. NMR and mass spectra were determined at Irvine with spectrometers purchased with the assistance of NSF Departmental Instrumentation grants, while 500-MHz 'H NMR spectra were determined at the NSF-supported Southern California Regional NMR Facility.

Supplementary Material Available: **250-MHz** 'H **NMR** and IR spectra for **2,4-9, and 11-17 (28** pages). Ordering information is given on any current masthead page.

(20) Kindly provided by Dr. J. **Daly. The minor isomer7 showed** characteristic ¹H NMR absorptions at δ 1.00 (d, $J = 6.6$ Hz, C-11 Me) and 0.83 (t, $J = 7.4$ Hz, C-17 Me).

(21) Additional experiments, which will be detailed in a full account of this work, have confirmed that the minor isomer in the natural sample of pumiliotoxin A is indeed the 15-R epimer.

(22) Mensah-Dwumah, M.; Daly, J. **W. Toricon 1978,** *16,* **189. (23) The biological comparisons were made by Dr.** J. **Daly.**

(24) For other applications of iminium ion-vinylsilane cyclizations, see: Overman, L. E.; Burk, R. M. Tetrahedron *Lett.* **1984,25,5739. Overman, L. E.; Malone, T. C.; Meier, G. P.** *J. Am. Chem.* **SOC. 1983,** *105,* **6993. Overman, L. E.; Malone, T. C.** *J.* **Org.** *Chem.* **1982, 47, 5297.**

Larry **E.** Overman,* Nan-Horng Lin

Department of Chemistry University of California Irvine, California 92717 Received May 22, 1985

Lythraceae Alkaloids: Total Synthesis **of** (f)-Lythrancepine **I1**

Summary: A stereoselective total synthesis of the quinolizidine metacyclophane Lythraceae alkaloid lythrancepine I1 **(1)** is described.

Sir: The Lythraceae alkaloids are a large family of natural products that have been classified according to several structural types.' The largest structural family are qui-

⁽¹⁴⁾ Ireland, R. E.; Mueller, R. H.; Willard, A. K. *J. Am. Chem. SOC.* **1976,** *98,* **2868.**

⁽¹⁵⁾ Nagatsuma, M.; Shirai, F.; Sayo, N.; Nakai, T. *Chem. Lett.* **1984, 1393.**

⁽¹⁶⁾ We have generally found⁶ that C-11 epimers in the pumiliotoxin **A** alkaloid series having intact (*Z*)-6-alkylideneindolizidine ring systems can be separated by careful flash chromatography on silica gel.
(17) This intermediate was a ca. 7:1 mixture of C-11 epimers.
(18) Parikh, J. R.; Doering, W. Von E. J. Am. Chem. Soc. 1967, 89,

^{5505.}

⁽¹⁹⁾ Corey, E. J.; **Fuchs, P. L. Tetrahedron** *Lett.* **1972, 3769.**

⁽¹⁾ For reviews, see: Golebiewski, W. M.; WrBbel, J. **T. In "The Alkaloids"; Rodrigo, R. G. A., Ed.; Academic Press: New York, 1981; Vol. 18, pp 263-322. Fujita, E.; Fuji, K. In "International Review of Science, Organic Chemistry Series** Two"; **Wiesner,** K., **Ed.; Buttenvorths: London, 1976; p 119.**